Continuous images of weakly compact subsets of Banach spaces

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Weakly Compact Subsets of Banach Spaces

Introduction. The two sections of this note are independent, but they are related by the fact that both use the results of [5 ] to obtain information on the properties of weakly compact sets in Banach spaces. In the first section we prove some results on a class of compact sets which is believed to include all weakly compact subsets of Banach spaces. We are interested in the properties of the n...

متن کامل

Weakly Compact Approximation in Banach Spaces

The Banach space E has the weakly compact approximation property (W.A.P. for short) if there is a constant C < ∞ so that for any weakly compact set D ⊂ E and ε > 0 there is a weakly compact operator V : E → E satisfying supx∈D ‖x − V x‖ < ε and ‖V ‖ ≤ C. We give several examples of Banach spaces both with and without this approximation property. Our main results demonstrate that the James-type ...

متن کامل

Some properties of b-weakly compact operators on Banach lattices

In this paper we give some necessary and sufficient conditions for which each Banach lattice  is    space and we study some properties of b-weakly compact operators from a Banach lattice  into a Banach space . We show that every weakly compact operator from a Banach lattice  into a Banach space  is b-weakly compact and give a counterexample which shows that the inverse is not true but we prove ...

متن کامل

New Examples of Weakly Compact Approximation in Banach Spaces

The Banach space E has the weakly compact approximation property (W.A.P.) if there is C < ∞ so that the identity map IE can be uniformly approximated on any weakly compact subset D ⊂ E by weakly compact operators V on E satisfying ‖V ‖ ≤ C. We show that the spaces N(`, `) of nuclear operators ` → ` have the W.A.P. for 1 < q ≤ p < ∞, but that the Hardy space H does not have the W.A.P.

متن کامل

Concerning Continuous Images of Compact Ordered Spaces

It is the purpose of this paper to prove that if each of X and Y is a compact Hausdorff space containing infinitely many points, and X X Y is the continuous image of a compact ordered space L, then both X and Fare metrizable.2 The preceding theorem is a generalization of a theorem [l ] by Mardesic and Papic, who assume that X, Y, and L are also connected. Young, in [3], shows that the Cartesian...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Pacific Journal of Mathematics

سال: 1977

ISSN: 0030-8730,0030-8730

DOI: 10.2140/pjm.1977.70.309